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EXECUTIVE SUMMARY
Multiphysics models have been developed to quantify the for-

mation mechanisms of various defects related to flow instability, 
particle transport and capture, superheat transport, surface de-
pression, and cracking in continuous steel casting. To simulate 
these complex and interrelated phenomena more accurately, the 
research team implemented a commercial computational fluid 
dynamics program, ANSYS Fluent high-performance computing 
(HPC), and the multi-GPU-based in-house CUFLOW codes on 
Blue Waters’ XE and XK nodes, respectively. Using these codes 
on Blue Waters’ resources, various turbulent flow models includ-
ing large-eddy simulations and Reynolds-averaged Navier–Stokes 
models have been coupled with the volume of fluid method, dis-
crete phase model, particle capture models, and heat transfer 
models. Finally, the team is applying these models with mag-
netohydrodynamics (MHD) models to investigate the effects of 
electromagnetic systems (static or moving magnetic fields) on 
defect formation, such as longitudinal cracks and hooks, and to 
explore practical strategies for reducing defects in the process. 

RESEARCH CHALLENGE
Continuous casting is the dominant process used to solidify 

over 96% of steel produced in the world [1]. Thus, even small im-
provements can have tremendous industrial impact. Many de-
fects in final steel products originate in the mold region of the 
process owing to transient phenomena, which include turbulent 
multiphase flow, particle transport and capture, heat transfer, so-
lidification, and thermal–mechanical behavior. To reduce defect 
formation, various electromagnetic (EM) systems are often em-
ployed to control the transient turbulent flow and accompanying 
phenomena, according to the varying process conditions in the 
production facility [2]. Experiments and measurements to quan-
tify these phenomena are extremely limited owing to the harsh 
environment and huge size of the process as well as the many 
process parameters. Therefore, the development of high-reso-
lution computational models is an important tool to more ac-
curately simulate and understand the process phenomena and 
defect formation and to find more practical ways to reduce de-
fects and improve the process. Thus, the research team conduct-
ed multiphysics simulations on the Blue Waters supercomputer 
in order to quantify turbulent multiphase flow, argon gas bub-
ble interaction and size distribution, particle transport and cap-

ture, and superheat transport, and to simulate the effects of mov-
ing magnetic fields on these phenomena, in order to investigate 
ways to reduce defects.

METHODS & CODES
The research team conducted large-eddy simulations (LES) 

coupled with the volume of fluid method to calculate transient 
behavior of three-dimensional surface slag/molten steel interface 
during continuous steel-slab casting [3]. The team used the hy-
brid multiphase turbulent flow model [4,5] that couples the Eule-
rian–Eulerian (EE) two-fluid model together with a discrete phase 
model (DPM) that was validated with lab-scale low-melting al-
loy experiments to simulate argon bubble interaction (gas pock-
et formation, gas expansion, breakup, and coalescence) and size 
distributions in a real slide-gate nozzle [6]. These models have 
been developed using a commercial computational fluid dynamics 
program, ANSYS Fluent HPC, on Blue Waters’ XE nodes (AMD 
6276 “Interlagos” processor). In addition, transport and capture 
of the argon bubbles were calculated using LES coupled with the 
DPM and advanced capture models [7], which were implement-
ed on Blue Waters’ XK nodes (NVIDIA GK110 “Kepler” accel-
erator) with the multi-GPU-based in-house code CUFLOW [8]. 

The team applied the magnetic-induction MHD model [2] to-
gether with the turbulent-flow models (LES/Reynolds-averaged 
Navier–Stokes models), the DPM of the transport and capture of 
inclusions and bubbles, and a heat transfer model, to investigate 
effects of moving magnetic fields, including EM level stabilizer, 
EM level accelerator, and mold EM stirring (M–EMS) [2] on the 
flow pattern and instability, gas bubble distribution, temperature 
distribution, and superheat at the shell solidification front in the 
slab mold during steady continuous casting. 

Figure 1: Mold flow pattern and resulting temperature distribution affect 
defect formation in continuous steel casting.

RESULTS & IMPACT
Turbulent fluid flow, surface slag/molten steel interface insta-

bility, liquid-level fluctuations at the meniscus, slag entrainment, 
and entrapment were computed from the multiphysics model 
simulations. This allows understanding of slag defect formation 
mechanisms, especially the slag entrapment owing to sudden level 
drops near meniscus regions. From the validated EEDPM model 
[4,5] simulations, argon bubble behavior and size distributions 
in the turbulent molten-steel flow inside a slide-gate nozzle of 
the real caster [6] were revealed in detail. This calculation is ex-
pected to contribute to more accurate particle-capture results 
by being coupled with the advanced particle capture model [7].  

In addition, the study investigated initial solidification-related 
defects such as meniscus freezing, hook formation [9,10], and lon-
gitudinal crack formation near the meniscus with the further aid 
of the coupled heat-transfer model. For example, in mega-thick 
slab casting, as shown in Fig. 1, the distribution of superheat flux 
around the mold perimeter was very nonuniform with the unop-
timized mold flow pattern. In particular, superheat was unable 
to reach the meniscus corner, leading to deep hooks and/or lon-
gitudinal crack formation. In addition, the effect of the M–EMS 
on mold flow pattern, temperature, and superheat distribution 
was quantified from the magnetic-induction MHD model sim-
ulations. With M–EMS, the superheat flux at the shell front be-
came more uniform owing to the rotating flow around the pe-
rimeter of the mold, resulting in higher superheat flux to the 
corners, as shown in Fig. 2. This effect is expected to lessen ini-
tial solidification defects, so long as the magnetic field strength 
is within an optimal range.

WHY BLUE WATERS
The high-resolution models used to more accurately simulate 

and better understand defect formation mechanisms in continuous 
steel casting are very computationally intensive. The many coupled 
governing equations need to be solved for turbulent flow, parti-
cle transport and capture, temperature, and MHD fields. More-
over, many computational cells are required to capture these com-
plex and interrelated phenomena on micrometer and millisecond 
scale in the huge domain. Blue Waters enables such high-resolu-
tion simulations in a reasonable time frame by speeding up AN-
SYS Fluent HPC calculations by more than 3,000 times and CU-
FLOW calculations by 50 times. Furthermore, the Blue Waters 

parallel computing environment enables numerous cases to be 
calculated simultaneously with different process conditions for 
parametric studies essential to optimize this complex process. 
Thus, the Blue Waters supercomputer provides a great contri-
bution to obtaining deep insights into complicated defect-relat-
ed phenomena with high resolution in order to improve this im-
portant commercial process.
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flux profiles near the 
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